Super-wettability and Beyond Quantum-confined Superfluid: Biological Energy Conversion, Chemical Reaction and Information Transfer

Lei Jiang

Techinical Institute of Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing 100190

Life system presents an ultralow energy consumption in high-efficiency energy conversion, information transmission and bio-synthesis. The total energy intake of human body is about 2000 kcal/day to maintain all our activities, which is comparable to a power of \sim 100 W. The energy required for brain to work is equivalent to \sim 20 W, while the rest energy (\sim 80 W) is used for other activities. All in vivo bio-syntheses take place only at body temperature, which is much lower than that of in vitro reactions. To achieve these ultralow energyconsumption processes, there should be a kind of ultralow-resistivity matter transport in nanochannels (e.g., ionic, molecular channels), in which the directional collective motion of ions or molecules is a necessary condition, rather than the traditional Newton diffusion. Directional collective motion of ions and molecules are considered as ionic/molecular superfluid. The research of ionic/molecular superfluid will promote the development of neuroscience and brain science, develop quantum ionic technology, construct future chemical reactors with high flux, high selectivity and low energy consumption, and produce a series of disruptive technologies.

Reference

- [1] L. Wen, X. Zhang, Y. Tian, L. Jiang. Sci. China. Mater., 2018, 61, 1027.
- [2] X. Zhang, H. Liu, L. Jiang. Adv. Mater., **2019**, *31*, 1804508.
- [3] S. Liu, X. Zhang, L. Jiang. Adv. Mater. Interfaces, 2019, 6, 1900104.
- [4] X. Zhang, L. Jiang. Nano Res., 2019, 12, 1219.
- [5] X. Zhang, M. Antonietti, L. Jiang. Sci. China Mater., 2020, 63, 167.
- [6] Y. Hao, S. Pang, X. Zhang, L. Jiang. Chem. Sci., 2020, 11, 10035.
- [7] X. Zhang, B. Song, L. Jiang. CCS Chem., 2021, 3, 1258.
- [8] N. Li, D, Peng, X. Zhang, Y. Shu, F. Zhang, L. Jiang, B. Song. Nano Res., 2021, 14, 40.
- [9] B. Song, L. Jiang. Sci. China. Mater., 2021, 64, 2572.
- [10] F. Zhang, B. Song, L. Jiang. Nano Res., 2021, 14, 4367.
- [11] B. Song, L. Jiang. Nano Res., 2022, 15, 5230.
- [12] X. Zhang, B. Song, L. Jiang. Acc. Chem. Res., 2022, 55, 1195.
- [13] B. Song, L. Jiang. Nano Res., 2023, 16, 2630-2634