Understanding and Controlling Charge, Heat, and Spin at Atomically Precise Interfaces

Paul S. Weiss

California NanoSystems Institute and Departments of Chemistry & Biochemistry, Bioengineering, and Materials Science & Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA psw@cnsi.ucla.edu

One of the key advances in nanoscience and nanotechnology has been our increasing ability to reach the limits of atomically precise structures. By having developed the "eyes" to see, to record spectra, and to measure function at the nanoscale, we have been able to fabricate structures with precision as well as to understand the important and intrinsic heterogeneity of function found in these assemblies. The physical, electronic, mechanical, and chemical connections that materials make to one another and to the outside world are critical. Just as the properties and applications of conventional semiconductor devices depend on these contacts, so do nanomaterials, many nanoscale measurements, and devices of the future. We explore the important roles that these contacts can play in preserving key transport and other properties. Initial nanoscale connections and measurements guide the path to future opportunities and challenges ahead. Band alignment, minimally disruptive connections, and control of spin and heat are all targets and can be characterized in both experiment and theory. I discuss our initial forays into this area in a number of materials systems.