Rajendra K. Bordia: Coupled experimental and numerical investigation of evolution of anisotropic microstructures during stress-assisted and constrained sintering
YUCOMAT 2021
Herceg Novi, Montenegro, 2021
YUCOMAT 2021
Openning
YUCOMAT 2021
Competition : : Best Poster Presentation
YUCOMAT 2021
Competition : : Best Poster Presentation
YUCOMAT 2021
MRS Serbia
YUCOMAT 2021
Competition : : Best Poster Presentation
YUCOMAT 2021
Yury Gogotsi - Award for a Lasting and Outstanding Contribution to Materials Science and Engineering
YUCOMAT 2021
Herceg Novi, Montenegro, 2021
YUCOMAT 2021
In Between
YUCOMAT 2021
Awards & Closing
YUCOMAT 2021
Herceg Novi, Montenegro, 2021
YUCOMAT 2021
Audience
YUCOMAT 2021
Discussion
YUCOMAT 2021
In Between
YUCOMAT 2021
Poster Session
YUCOMAT 2021
Audience
YUCOMAT 2021
Discussion
YUCOMAT 2021
Audience - outside
YUCOMAT 2021
MRS Serbia
YUCOMAT 2021
Discussion
YUCOMAT 2021
Herceg Novi, Montenegro
YUCOMAT 2021
In Between
YUCOMAT 2021
MRS Serbia
YUCOMAT 2021
Herceg Novi, Montenegro
YUCOMAT 2021
MRS Serbia
YUCOMAT 2021
Audience
YUCOMAT 2021
Herceg Novi, Montenegro

Rajendra K. Bordia, Eugene Olevsky*, Christophe Martin**

 

Clemson University, USA
*Diego State University, USA
**DUniv. Grenoble Alpes, CNRS, SIMaP, Grenoble F-38000, France

 

In many cases, a porous body is subjected to non-hydrostatic stresses during sintering. Two practically important cases are sintering under external uniaxial stress (sinter-forging) and constrained sintering of ceramic coatings and films. In this talk, the densification and evolution of the microstructure, during sinter-forging and constrained sintering, will be discussed. For these cases, although the stress state is different, there is an equivalence in the strain state.

Experimentally and using multi-scale, we show that the pore shape evolution during stress assisted sintering is dependent on the size of the pore. We define two types of pores – intrinsic small inter-particle pores, and extrinsic significantly larger than the intrinsic pores. We present experimental results on the development of pore shape anisotropy during sintering under nonhydrostatic stresses of ceramics containing both type of pores. The effect of stress on the microstructure is investigated. As expected during sintering under non-hydrostatic stress, the pore shape becomes anisotropic and the pores orient preferentially. However, the orientation of the pores, depends on both the size of the pores (intrinsic or extrinsic) and the anisotropic nature of the strain. Multiscale numerical simulations provide insights into the origin of this behavior. Based on these results, we also provide a fundamental definition of the transition pore size – pore size at which the behavior changers from intrinsic to extrinsic.