Richard LeSar, A Unified Computational Approach for Dislocation-Based Plasticity
YUCOMAT & WRTCS 2022
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro, 2022
YUCOMAT & WRTCS 2022
Openning
YUCOMAT & WRTCS 2022
Ana Senos lecture
YUCOMAT & WRTCS 2022
Hamish L. Fraser lecture
YUCOMAT & WRTCS 2022
Poster Session
YUCOMAT & WRTCS 2022
Competition : : Best Poster Presentation
YUCOMAT & WRTCS 2022
Prof Uskokovic Welcome speech
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro, 2022
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro, 2022
YUCOMAT & WRTCS 2022
Board members
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro, 2022
YUCOMAT & WRTCS 2022
Audience
YUCOMAT & WRTCS 2022
Discussion
YUCOMAT & WRTCS 2022
Boat Trip
YUCOMAT & WRTCS 2022
Poster Session
YUCOMAT & WRTCS 2022
Vladimir Torchilin lecture
YUCOMAT & WRTCS 2022
Discussion
YUCOMAT & WRTCS 2022
Darya Farrokhnemoun
YUCOMAT & WRTCS 2022
MRS Serbia
YUCOMAT & WRTCS 2022
Discussion
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro
YUCOMAT & WRTCS 2022
Desk
YUCOMAT & WRTCS 2022
Dušan Tripković
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro
YUCOMAT & WRTCS 2022
Boat Trip
YUCOMAT & WRTCS 2022
Audience
YUCOMAT & WRTCS 2022
Yury Gogotsi lecture
YUCOMAT & WRTCS 2022
IISS

Richard LeSar, John Graham, Laurent Capolungo

Iowa State University Department of Materials Science and Engineering Ames, IA US
Ames Laboratory Ames, IA US
Los Alamos National Laboratory Los Alamos, NM US

Discrete dislocation dynamics (DD) simulations have been widely used to gain a better understanding of the mechanisms involved in the deformation of metals. While there are a number of variants of DD simulations, they all involve the calculation of the stress at each dislocation, the resolving of that stress as a force, and solving the equations of motion. Sub-scale models are used to describe such processes as junction formation, cross-slip, and climb. In traditional DD approaches, the stresses are found by summing analytical expressions (usually based on isotropic elasticity). Recently we have shown that the stress calculation can be done using a fast Fourier transform (FFT) method based on an eigenstrain representation of the plasticity. The FFT-DD approach is faster than conventional methods and enables use of anisotropic elasticity with little change in computational time.  In addition, it is straightforward to include any type of additional eigenstrain, allowing us link the FFT-DD method directly within the FFT-polycrystal framework developed by Lebensohn, which enables direct simulations of dislocation-based plasticity in fully polycrystalline systems. In this talk, we will show recent applications of the FFT-DD-polycrystal method. We will also show how this same framework enables straightforward modeling of such phenomena as precipitate/inclusion/solute hardening, creep, etc., providing a unified approach for dealing with complex deformation phenomena. 

Plenary lectures - YUCOMAT 2018

member since 2008