R. Ramesh, Electric Field Control of Magnetism
YUCOMAT & WRTCS 2022
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro, 2022
YUCOMAT & WRTCS 2022
Openning
YUCOMAT & WRTCS 2022
Ana Senos lecture
YUCOMAT & WRTCS 2022
Hamish L. Fraser lecture
YUCOMAT & WRTCS 2022
Poster Session
YUCOMAT & WRTCS 2022
Competition : : Best Poster Presentation
YUCOMAT & WRTCS 2022
Prof Uskokovic Welcome speech
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro, 2022
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro, 2022
YUCOMAT & WRTCS 2022
Board members
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro, 2022
YUCOMAT & WRTCS 2022
Audience
YUCOMAT & WRTCS 2022
Discussion
YUCOMAT & WRTCS 2022
Boat Trip
YUCOMAT & WRTCS 2022
Poster Session
YUCOMAT & WRTCS 2022
Vladimir Torchilin lecture
YUCOMAT & WRTCS 2022
Discussion
YUCOMAT & WRTCS 2022
Darya Farrokhnemoun
YUCOMAT & WRTCS 2022
MRS Serbia
YUCOMAT & WRTCS 2022
Discussion
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro
YUCOMAT & WRTCS 2022
Desk
YUCOMAT & WRTCS 2022
Dušan Tripković
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro
YUCOMAT & WRTCS 2022
Boat Trip
YUCOMAT & WRTCS 2022
Audience
YUCOMAT & WRTCS 2022
Yury Gogotsi lecture
YUCOMAT & WRTCS 2022
IISS

R. Ramesh

* Department of Physics and Department of Materials Science and Engineering
Lawrence Berkeley National Laboratory,
University of California, Berkeley, CA 94720.

Complex perovskite oxides exhibit a rich spectrum of functional responses, including magnetism, ferroelectricity, highly correlated electron behavior, superconductivity, etc. The basic materials physics of such materials provide the ideal playground for interdisciplinary scientific exploration with an eye towards real applications. Over the past decade the oxide community has been exploring the science of such materials as crystals and in thin film form by creating epitaxial heterostructures and nanostructures. Among the large number of materials systems, there exists a small set of materials which exhibit multiple order parameters; these are known as multiferroics, particularly, the coexistence of ferroelectricity and some form of ordered magnetism (typically antiferromagnetism). The scientific community has been able to demonstrate electric field control of both antiferromagnetism and ferromagnetism at room temperature. Current work is focused on ultralow energy (1 attoJoule/operation) electric field manipulation of magnetism as the backbone for the next generation of ultralow power electronics. In this lecture, I will describe our progress to date on this exciting possibility. The lecture will conclude with a summary of where the future research is going.

Plenary lectures - YUCOMAT 2018

member since 2008