Emil Babić, On the origin of high glass forming ability in metallic systems
YUCOMAT 2024 & XIII WRTCS
Awards
YUCOMAT 2024 & XIII WRTCS
MRS Board members
YUCOMAT 2024 & XIII WRTCS
Prof Dr Dragan Uskokovic Welcome Speech
YUCOMAT 2024 & XIII WRTCS
Audience
YUCOMAT 2024 & XIII WRTCS
Award of Appreciation Prof Dr Dejan Raković
YUCOMAT 2024 & XIII WRTCS
Award of Appreciation Trend travel
YUCOMAT 2024 & XIII WRTCS
Award Prof Dr Vladimir Torchilin and Prof Dr Robert Sinclair
YUCOMAT 2024 & XIII WRTCS
Herceg Novi, Montenegro, 2024
YUCOMAT 2024 & XIII WRTCS
Prof Dr Mirjana Kostic, Prof Dr Djordje Janackovic and his wife, Prof Dr Patrick Gane and his wife
YUCOMAT 2024 & XIII WRTCS
Herceg Novi, Montenegro, 2024
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Herceg Novi, Montenegro, 2024
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Filipa Oliviera
YUCOMAT 2024 & XIII WRTCS
Marcel Herber
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
evheniia Husak, Inna Chorna, Sergiy Kyrylenko_prof. Yury Gogotsi
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Ethan Segura, Rene Guillen Pineda
YUCOMAT 2024 & XIII WRTCS
Herceg Novi, Montenegro
YUCOMAT 2024 & XIII WRTCS
Board members
YUCOMAT 2024 & XIII WRTCS
Prof Dr Djordje Janackovic best presentation awards
YUCOMAT 2024 & XIII WRTCS
Herceg Novi, Montenegro
YUCOMAT 2024 & XIII WRTCS
Audience
YUCOMAT 2024 & XIII WRTCS
Prof Dr Yury Gogotsi
YUCOMAT 2024 & XIII WRTCS
Audience
YUCOMAT 2024 & XIII WRTCS
Dr Carmen Lorena Manzanares-Palenzuela

E. Babić1, R. Ristić2, I. A. Figueroa3, D. Pajić1, Ž. Skoko1, K. Zadro1

1 Department of Physics, Faculty of Science, University of Zagreb, Zagreb, HR 10000, Croatia
2 Department of Physics, University of Osijek, Osijek, HR 31000, Croatia
3 Institute of Materials Research-UNAM, Universitaria Coyoacan, C. P. 04510 Mexico, Mexico

Rapidly cooled atomic and molecular liquids can bypass crystallization and vitrify. While network bonding in silica and chain entanglement in polymers seem plausible mechanisms for inhibiting their crystallization, the corresponding mechanism for metallic systems is less clear. When molten alloy is cooled, the formation of metallic glass (MG) usually competes with that of intermetallic compounds (IC) : thus similar free energies (G) of MG and competing IC(s) facilitate vitrification. At low temperatures G is dominated with internal energy which in metallic systems strongly depends on electronic structure (ES). Thus small differences in ES between MG and competing IC(s) promote vitrification, as observed in several binary and ternary transition metal (TM) alloy systems.

This correlation seems applicable to all TM alloys irrespective on their number of alloying components ( thus also to high-entropy alloys) and provides a simple way to select compositions with high glass forming ability.

This work was supported by UNAM-DGAPA-PAPIIT project No.IN101016 and Osijek University project IZIP2016-3

Plenary lectures - YUCOMAT 2018

member since 2008