Hamish L. Fraser: Optimizing the properties of titanium alloys processed using additive manufacturing
YUCOMAT & WRTCS 2022
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro, 2022
YUCOMAT & WRTCS 2022
Openning
YUCOMAT & WRTCS 2022
Ana Senos lecture
YUCOMAT & WRTCS 2022
Hamish L. Fraser lecture
YUCOMAT & WRTCS 2022
Poster Session
YUCOMAT & WRTCS 2022
Competition : : Best Poster Presentation
YUCOMAT & WRTCS 2022
Prof Uskokovic Welcome speech
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro, 2022
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro, 2022
YUCOMAT & WRTCS 2022
Board members
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro, 2022
YUCOMAT & WRTCS 2022
Audience
YUCOMAT & WRTCS 2022
Discussion
YUCOMAT & WRTCS 2022
Boat Trip
YUCOMAT & WRTCS 2022
Poster Session
YUCOMAT & WRTCS 2022
Vladimir Torchilin lecture
YUCOMAT & WRTCS 2022
Discussion
YUCOMAT & WRTCS 2022
Darya Farrokhnemoun
YUCOMAT & WRTCS 2022
MRS Serbia
YUCOMAT & WRTCS 2022
Discussion
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro
YUCOMAT & WRTCS 2022
Desk
YUCOMAT & WRTCS 2022
Dušan Tripković
YUCOMAT & WRTCS 2022
Herceg Novi, Montenegro
YUCOMAT & WRTCS 2022
Boat Trip
YUCOMAT & WRTCS 2022
Audience
YUCOMAT & WRTCS 2022
Yury Gogotsi lecture
YUCOMAT & WRTCS 2022
IISS

Brian Welk, Nevin Taylor, Samuel Kuhr, G.B Viswanathan, Hamish L. Fraser

 

Center for the Accelerated Maturation of Materials, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA

 

There are a number of defects associated with the additive manufacturing (AM) of titanium alloys. These include the formation of coarse columnar microstructures, generally parallel to the growth/deposition direction in builds produced by blown powder, the presence of porosity, and residual stresses. This talk focuses on the first of these, coarse microstructures. Emphasis has been on the use of alloying to effect an equiaxed microstructure through modification of the solidification mechanism, by inducing a columnar to equiaxed transition (CET). The experiments have employed a combinatorial approach developed in our laboratory, where a LENS™ (blown powder) AM device with two powder hoppers has been used to produce variations in the minor alloying elements of interest, such that modifications to microstructure can be directly related to changes in composition. The microstructures produced as a result of the additive manufacturing process have been characterized. In the main, the use of selective alloying has been successful in terms of effecting a CET, such that refined equaixed grains are produced. A variety of microstructures may be produced during subsequent heat-treatment, and the underlying mechanism of formation of these has been studied. The mechanical properties of new Ti alloys, with alloying additions that result in CETs, have been assessed and their values have been compared with those predicted by a machine learning approach. These comparisons will be discussed.

Plenary lectures - YUCOMAT 2019

member since 2008