Thomas J. Webster
Art Zafiropoulo Chair, Department Chair, Chemical Engineering, Northeastern University, Boston, MA USA
There is an acute shortage of organs due to disease, trauma, congenital defect, and most importantly, age related maladies. While tissue engineering (and nanotechnology) has made great strides towards improving tissue growth, infection control has been largely forgotten. Critically, as a consequence, the Centers for Disease Control have predicted more deaths from antibiotic-resistant bacteria than all cancers combined by 2050. moreover, there has been a lack of translation to real commercial products. This talk will summarize how nanotechnology can be used to increase tissue growth and decrease implant infection without using antibiotics but using sensors (while getting regulatory approval). Our group has shown that nanofeatures, nano-modifications, nanoparticles, and most importantly, nanosensors can reduce bacterial growth without using antibiotics. This talk will summarize techniques and efforts to create nanosensors for a wide range of medical and tissue engineering applications, particularly those that have received FDA approval and are currently being implanted in humans.