Andrea C. Ferrari: Graphene and related materials, from production to applications
YUCOMAT 2024 & XIII WRTCS
Awards
YUCOMAT 2024 & XIII WRTCS
MRS Board members
YUCOMAT 2024 & XIII WRTCS
Prof Dr Dragan Uskokovic Welcome Speech
YUCOMAT 2024 & XIII WRTCS
Audience
YUCOMAT 2024 & XIII WRTCS
Award of Appreciation Prof Dr Dejan Raković
YUCOMAT 2024 & XIII WRTCS
Award of Appreciation Trend travel
YUCOMAT 2024 & XIII WRTCS
Award Prof Dr Vladimir Torchilin and Prof Dr Robert Sinclair
YUCOMAT 2024 & XIII WRTCS
Herceg Novi, Montenegro, 2024
YUCOMAT 2024 & XIII WRTCS
Prof Dr Mirjana Kostic, Prof Dr Djordje Janackovic and his wife, Prof Dr Patrick Gane and his wife
YUCOMAT 2024 & XIII WRTCS
Herceg Novi, Montenegro, 2024
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Herceg Novi, Montenegro, 2024
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Filipa Oliviera
YUCOMAT 2024 & XIII WRTCS
Marcel Herber
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
evheniia Husak, Inna Chorna, Sergiy Kyrylenko_prof. Yury Gogotsi
YUCOMAT 2024 & XIII WRTCS
Poster discussion
YUCOMAT 2024 & XIII WRTCS
Ethan Segura, Rene Guillen Pineda
YUCOMAT 2024 & XIII WRTCS
Herceg Novi, Montenegro
YUCOMAT 2024 & XIII WRTCS
Board members
YUCOMAT 2024 & XIII WRTCS
Prof Dr Djordje Janackovic best presentation awards
YUCOMAT 2024 & XIII WRTCS
Herceg Novi, Montenegro
YUCOMAT 2024 & XIII WRTCS
Audience
YUCOMAT 2024 & XIII WRTCS
Prof Dr Yury Gogotsi
YUCOMAT 2024 & XIII WRTCS
Audience
YUCOMAT 2024 & XIII WRTCS
Dr Carmen Lorena Manzanares-Palenzuela

Andrea C. Ferrari

 

Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 OFA, UK

 

Disruptive technologies are usually characterised by universal, versatile applications, which change many aspects of our life simultaneously, penetrating every corner of our existence. In order to become disruptive, a new technology needs to offer not incremental, but dramatic, orders of magnitude improvements. Moreover, the more universal the technology, the better chances it has for broad base success. Significant progress has been made in taking graphene and related materials from a state of raw potential to a point where they can revolutionize multiple industries.

Graphene is an ideal material for optoelectronic applications. Its photonic properties give several advantages and complementarities over Si photonics. I will show that graphene-based integrated photonics could enable ultrahigh spatial bandwidth density, low power consumption for next generation datacom and telecom applications. Heterostructures based on layers of atomic crystals have a number of properties often unique and very different from those of their individual constituents and of their three dimensional counterparts. I will show how these can be exploited in novel light emitting devices, such as single photon emitters, and tuneable light emitting diodes.

Plenary lectures - YUCOMAT 2019

member since 2008